# 都市環境情報 -1

東北工業大学 建築学科 渡辺 浩文

## 本講義の目的(学習目標)

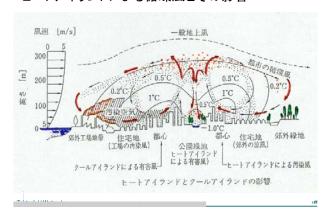
・地理情報システム

(GIS: Geographic Information System)

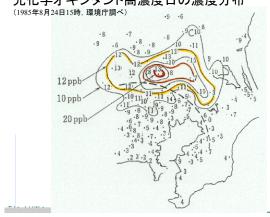
の概念を学ぶ

- ・GISの基本的な構成(機能, 操作, 応用)を学ぶ
- ・実習により理解を深める
- ・GISをツールととらえ「何に使えるのか」を考えてもらう

("都市環境情報"はあくまでも題材)


## 講義内容

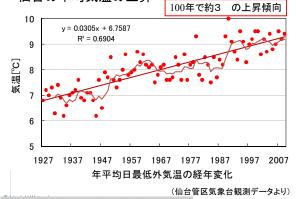
- ◆ 都市・地域環境と地理情報システム
- ◆GISとは?
- ◆ 実世界のモデル化(地図投影法と座標系)
- ◆ ラスター型都市環境情報の概要
- ◆ラスター・データの操作実習
- ◆ ベクトル型都市環境情報の概要
- ◆ベクトル・データの操作実習
- ◆ 応用事例紹介
- ◆ 環境情報システムの今後と課題


## ヒートアイランド現象とは?



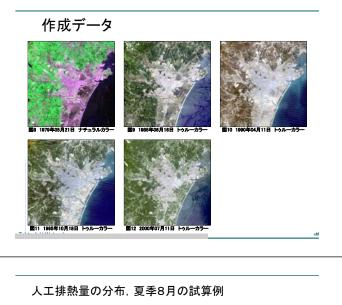
## ヒートアイランドによる循環風とその影響

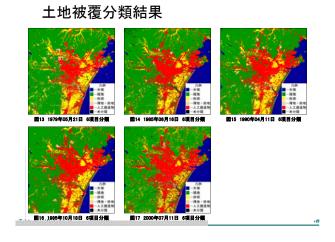


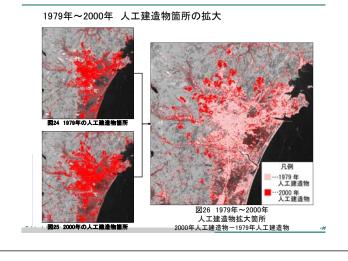

# 光化学オキシダント高濃度日の濃度分布



# ヒートアイランド現象の原因


- → 土地被覆の改変(都市化) 市街地の拡大(都市のスプロール化) 緑地からアスファルト・コンクリートへ
- → 人工廃熱(エネルギー消費)
  冷房、自動車、工場...

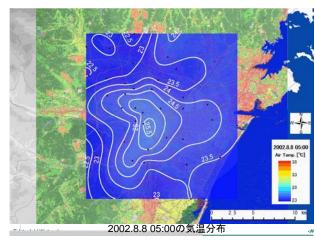

# 仙台の平均気温の上昇

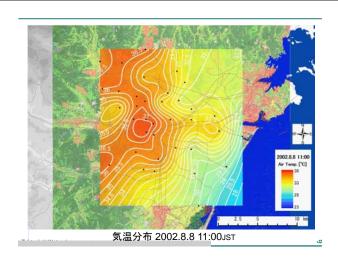


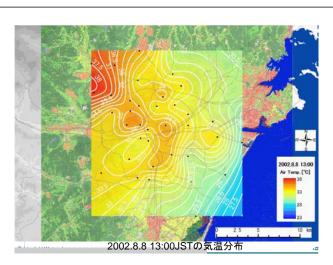


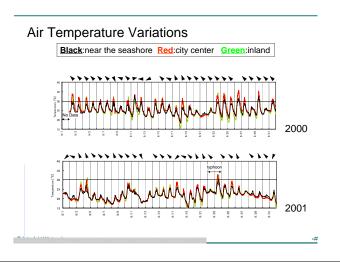
# 人工衛星データによる仙台の市街化状況分析

- ◆ 使用衛星 Landsat (1972年1号打ち上げ・現在7号運用)
- ◆ 使用データ 1979年05月21日 1985年6月16日 1995年10月21日 1990年4月11日 2000年7月11日
- ◆ 仙台周辺約30km四方対象
- ◆ マルチチャンネル・データを 土地被覆6分類し、比較検討



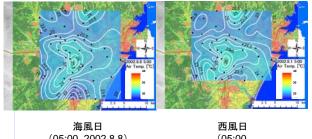












# Black:near the seashore Red:city center Green:inland

# 日最高気温と日中主風向との関係

| Max. Temp.  |     |     |     |     | 東~南東~南 |     |    |     |   | ytime (9:00 - 18:0 西 |    |     |   |     |    |     |   |       |
|-------------|-----|-----|-----|-----|--------|-----|----|-----|---|----------------------|----|-----|---|-----|----|-----|---|-------|
|             | N   | NNE | NE  | ENE | Е      | ESE | SE | SSE | S | SSW                  | SW | wsw | W | WNW | NW | NNW |   | Total |
| 35°C-       |     |     |     |     |        |     |    |     |   |                      |    |     | 2 |     |    |     |   | 2     |
| 30°C - 35°C | . 真 | 夏   | ∃ _ |     | 2      | 2   | 24 | 3   | 1 |                      |    | 1   | 1 |     |    | 1   | 3 | 39    |
| 25℃ - 30℃   |     |     | 1   | 1   |        | 4   | 22 | 13  | 1 | 1                    |    |     |   | 1   | 1  |     | 8 | 53    |
| 20°C - 25°C | 2   | 2   | 2   |     |        | 5   | 18 | 3   | 1 |                      |    |     |   |     |    | 1   | 7 | 41    |
| -20°C       | 1   |     |     |     |        |     | 1  |     |   |                      |    |     |   |     |    | 1   |   | 3     |
|             |     |     |     |     |        |     |    |     |   |                      |    |     |   |     |    |     |   |       |

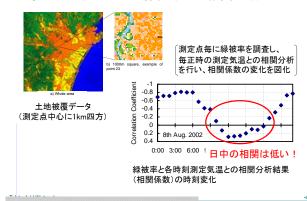
(仙台管区気象台資料より作成)


#### 海風日(南東風日)と西風日の気温分布の比較(05:00)

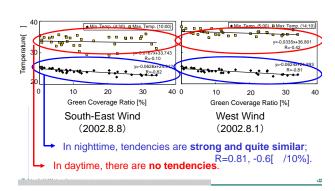


(05:00, 2002.8.8)

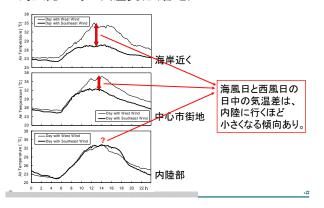
(05:00. 2002.8.1)


#### 海風日(南東風日)と西風日の気温分布の比較(14:00)

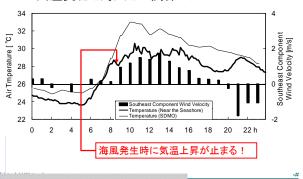



## 海風日(南東風日)と西風日の気温変化の比較 (海沿い・中心市街地・内陸部)

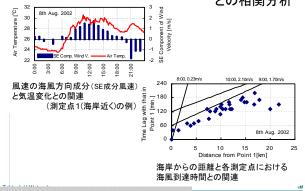



# 海風日の観測気温と緑被率との相関分析

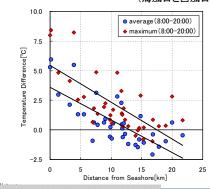



#### Simple Regression Analysis of Air Temperature and Green Coverage Ratio

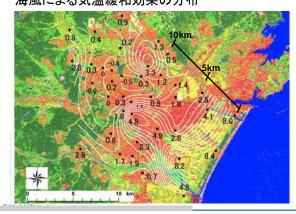



# 海風発生時の気温変化(各地)

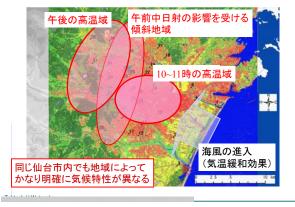



# 海岸近くの測定点における 気温変化と海風との関係 (2002.08.08)




# 海風(気温上昇緩和時刻と海岸からの距離) との相関分析




## 海岸からの距離と海風による気温緩和効果との関係 (海風日と西風日の気温差)



### 海風による気温緩和効果の分布



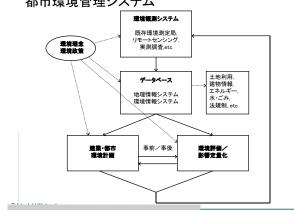
# 都市気候観測とその分析より



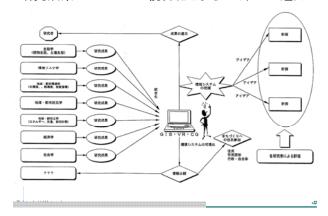
# 仙台の気候の特徴と都市計画上の配慮

- 海風の暑熱環境緩和効果が非常に大きい
- → 海近くの田園保全 風诵しのよい街区計画

通風の確保


- 緑地の効果は夜間顕著で日中は相対的には小さい
- → 局所的には体感上の効果は大きい 海風の吹かない日もある

効果的な緑化


- 同じ仙台市内であっても気候の特徴は異なる
- → 一律の規制・誘導ではなく

適材適所の環境緩和対策が求められる

## 都市環境管理システム



# 研究成果のGIS上での統合化とまちづくりへの還元



## 講義日程上の注意

・○の回の講義はIT演習室916にて行う。

#### 講義で用いるスライド・データは

「¥¥150.54.0.125¥授業用¥工学部¥環境情報工学科¥ 都市環境情報 担当渡邉¥資料公開用」にあります。 次回以降、自分自身で用意して下さい。

(但し昨年度のもの。若干修正するかも。データは使用時に指示します。)

#### 評価の方針

出席状況&レポートを総合的に評価

#### 参考書

図解! ArcGIS Part1&2, 吉田聡ほか, 古今書院 地理情報学入門, 野上道男ほか, 東京大学出版会 地理情報システムを学ぶ, 中村和郎他編, 古今書院 GISソースブック, 高阪宏行・岡部篤行編, 古今書院 都市環境学, 都市環境学教材編集委員会編, 森北出版 都市環境のクリマアトラス, 日本建築学会編, ぎょうせい